DESIGN OF COLD-FORMED STEEL STRUCTURES
ECCS EUROCODE DESIGN MANUALS

ECCS EDITORIAL BOARD
Luis Simões da Silva (ECCS)
António Lamas (Portugal)
Jean-Pierre Jaspart (Belgium)
Reidar Bjarhovde (USA)
Ulrike Kuhlmann (Germany)

DESIGN OF STEEL STRUCTURES
Luis Simões da Silva, Rui Simões and Helena Gervásio

FIRE DESIGN OF STEEL STRUCTURES
Jean-Marc Franssen and Paulo Vila Real

DESIGN OF PLATED STRUCTURES
Darko Beg, Ulrike Kuhlmann, Laurence Davaine and Benjamin Braun

FATIGUE DESIGN OF STEEL AND COMPOSITE STRUCTURES
Alain Nussbaumer, Luís Borges and Laurence Davaine

DESIGN OF COLD-FORMED STEEL STRUCTURES
Dan Dubina, Viorel Ungureanu and Raffaele Landolfo

AVAILABLE SOON

DESIGN OF COMPOSITE STRUCTURES
Markus Feldman and Benno Hoffmeister

DESIGN OF JOINTS IN STEEL AND COMPOSITE STRUCTURES
Jean-Pierre Jaspart, Klaus Weynand

DESIGN OF STEEL STRUCTURES FOR BUILDINGS IN SEISMIC AREAS
Raffaele Landolfo, Federico Mazzolani, Dan Dubina and Luís Simões da Silva

INFORMATION AND ORDERING DETAILS
For price, availability, and ordering visit our website www.steelconstruct.com.
For more information about books and journals visit www.ernst-und-sohn.de.
Table of Contents

FOREWORD xi
PREFACE xiii

Chapter 1
INTRODUCTION TO COLD-FORMED STEEL DESIGN 1
1.1 General 1
1.2 Cold-formed steel sections 4
1.2.1 Types of cold-formed steel sections 4
1.2.2 Manufacturing 9
1.2.3 Some peculiar characteristics of cold-formed steel sections 12
1.3 Peculiar problems of cold-formed steel design 15
1.3.1 Buckling strength of cold-formed steel members 15
1.3.2 Torsional rigidity 20
1.3.3 Web crippling 21
1.3.4 Ductility and plastic design 22
1.3.5 Connections 22
1.3.6 Design assisted by testing 23
1.3.7 Design standards 23
1.3.7.3 Eurocode 3 – Design of Steel Structures, Part 1.3 – General Rules, Supplementary Rules for Cold-formed Thin Gauge Members and Sheeting 26
1.3.8 Fire resistance 27
1.3.9 Corrosion 28
TABLE OF CONTENTS

1.3.10 Sustainability of cold-formed steel construction 28

1.4 Main applications of cold-formed steel 31

1.4.1 Advantages of cold-formed steel in building construction 31

1.4.1.1 Advantages during construction 31

1.4.1.2 Advantages in service 32

1.4.2 Applications 34

Chapter 2

BASIS OF DESIGN 47

2.1 General 47

2.2 Limit state design 49

2.3 Actions on structures. Combinations of actions 53

2.3.1 Verification at the Ultimate Limit State 54

2.3.2 Verification at the Serviceability Limit State 57

2.3.2.1 Deflections 60

2.3.2.2 Dynamic effects 63

2.4 Materials 65

2.4.1 General 65

2.4.2 Structural steel 67

2.4.2.1 Material properties of base material 67

2.4.2.2 Material properties of cold-formed sections and sheeting 68

2.4.2.3 Thickness and thickness tolerances 72

2.5 Methods of analysis and design 73

2.5.1 Methods of analysis – Global frame analysis 73

2.5.2 Finite Element Methods (FEM) for analysis and design 77

2.5.3 Design assisted by testing 80

2.6 Imperfections 85

2.6.1 Imperfections for global analysis of frames 85

2.6.2 Imperfections for analysis of bracing systems 90

2.6.3 Role of imperfections in advanced numerical simulation 91

2.6.3.1 Section imperfections 93

2.6.3.2 Residual stresses 94
Chapter 3

BEHAVIOUR AND RESISTANCE OF CROSS SECTION 97

3.1 General 97

3.2 Properties of gross cross section 100
 3.2.1 Nominal dimensions and idealisation of cross section 100
 3.2.2 Net geometric properties of perforated sections 104
 3.2.3 Dimensional limits of component walls of cold-formed steel sections 107
 3.2.4 Modelling of cross section component walls for analysis 110

3.3 Flange curling 111

3.4 Shear lag 114

3.5 Local buckling 116
 3.5.1 Sectional buckling modes in thin-walled sections 116
 3.5.2 Elastic buckling of thin plates 118

3.6 Distortional buckling: analytical methods for predicting elastic distortional buckling stresses 129
 3.6.1 The method given in EN 1993-1-3:2006 130

3.7 Design against local and distortional buckling according to EN 1993-1-3 132
 3.7.1 General 132
 3.7.2 Plane elements without stiffeners 133
 3.7.3 Plane elements with edge or intermediate stiffeners 136
 3.7.3.1 General 136
 3.7.3.2 Plane elements with edge stiffeners 139
 3.7.3.2.1 Conditions 139
 3.7.3.2.2 General procedure 140
 3.7.3.3 Plane elements with intermediate stiffeners 162
 3.7.3.3.1 Conditions 162
 3.7.3.3.2 General procedure 163
 3.7.3.4 Trapezoidal sheeting profiles with intermediate stiffeners 165
 3.7.3.4.1 General 165
Table of Contents

3.7.3.4.2 Flanges with intermediate stiffeners 166
3.7.3.4.3 Webs with up to two intermediate stiffeners 169
3.7.3.4.4 Sheeting with flange stiffeners and web stiffeners 174

3.8 Resistance of cross sections 175
3.8.1 General 175
3.8.2 Axial tension 176
3.8.3 Axial compression 180
3.8.4 Bending moment
 3.8.4.1 Elastic and elastoplastic resistance with yielding at the compressed flange 185
 3.8.4.2 Elastic and elastoplastic resistance with yielding at the tension flange only 188
 3.8.4.3 Effects of shear lag 188
3.8.5 Shear force 192
3.8.6 Torsional moment 194
3.8.7 Local transverse forces
 3.8.7.1 General 203
 3.8.7.2 Cross sections with a single unstiffened web 204
 3.8.7.3 Cross sections with two or more unstiffened webs 214
 3.8.7.4 Stiffened webs 217
3.8.8 Combined tension and bending 218
3.8.9 Combined compression and bending 220
3.8.10 Combined shear force, axial force and bending moment 224
3.8.11 Combined bending moment and local load or support reaction 231

Chapter 4

BEHAVIOUR AND DESIGN RESISTANCE OF BAR MEMBERS 239
4.1 General 239
4.2 Compression members
 4.2.1 Theoretical background 241
 4.2.1.1 Ideal elastic members 241
4.2.1.2 Imperfect member 248
4.2.1.3 Class 4 sections: local-global interactive buckling 253

4.2.2 Buckling resistance of uniform members in compression.
 Design according to EN 1993-1-3 259
 4.2.2.1 Flexural buckling 260
 4.2.2.2 Torsional buckling and flexural-torsional buckling 262

4.3 Buckling strength of bending members 277
 4.3.1 Theoretical background 277
 4.3.2 Design according to EN 1993-1-3 289
 4.3.2.1 Lateral-torsional buckling of members subject to bending 289
 4.3.2.2 Simplified assessment methods for beams with restraints in building 291

4.4 Buckling of members in bending and axial compression 299
 4.4.1 Theoretical background 299
 4.4.2 Design of beam-columns according to EN 1993-1-1 and EN 1993-1-3 303
 4.4.2.1 General method for lateral and lateral-torsional buckling of structural components 311

4.5 Beams restrained by sheeting 324
 4.5.1 General. Constructional detailing and static system 324
 4.5.2 Modelling of beam-sheeting interaction 329
 4.5.3 Design of beams restrained by sheeting according to EN 1993-1-3 333
 4.5.3.1 Design criteria 334
 4.5.3.2 Design resistance 336
 4.5.3.3 Rotational restraint given by the sheeting 342
 4.5.4 Simplified design of purlins 346

4.6 Design of beams at serviceability limit states 363

Chapter 5

SHEETING ACTING AS DIAPHRAGM 367

5.1 Introduction 367
Table of Contents

5.2 General design considerations for diaphragm action 372
5.2.1 Conditions and restrictions for the use of stressed skin design 372
5.2.2 Types of diaphragms 375
5.2.3 Irregular roof chape 377
5.2.4 Design criteria 378
5.2.4.1 Diaphragm flexibility 378
5.2.4.2 Diaphragm strength 380
5.2.5 Interaction of diaphragm action and rigid-jointed frames 381
5.2.6 The danger of ignoring stressed skin action in conventional construction 381
5.3 Design procedures for sheeting acting as diaphragm 382
5.3.1 Design expressions for shear flexibility of diaphragm 382
5.3.1.1 Sheeting spanning perpendicular to length of diaphragm 382
5.3.1.2 Sheeting spanning parallel to length of diaphragm 394
5.3.2 Design expression for shear strength of diaphragms 397
5.3.2.1 Sheeting spanning perpendicular to length of diaphragms 397
5.3.2.2 Sheeting spanning parallel to length of diaphragm 402
5.3.2.3 Buckling strength of sheeting in shear 404
5.3.2.3.1 General 404
5.3.2.3.2 Global shear buckling 405
5.3.2.3.3 Local shear buckling 406
5.3.2.4 Effect of combined loads 407
5.3.3 Diaphragms with openings 407
5.3.3.1 Discrete openings 408
5.3.3.1.1 Requirements for discrete openings 408
5.3.3.1.2 Flexibility of diaphragms with discrete openings 409
Table of Contents

5.3.3.1.3 Strength of diaphragms with discrete openings 409

5.3.3.2 Strip openings 410

5.3.4 Two skin envelopes 410

5.4 Interaction of the shear diaphragms with supporting framing 412

5.4.1 General 412

5.4.2 Elastic design of framing

5.4.2.1 Rectangular frames: all frames loaded 413

5.4.2.2 Pitched roof frames: all frames loaded 415

5.4.2.3 One frame loaded 417

5.4.3 Plastic design of framing

5.4.3.1 Rectangular frames 418

5.4.3.2 Pitched roof frames 419

5.4.4 Modelling of diaphragm effect for frame analysis 420

5.5 Diaphragm action of sandwich panels 422

Chapter 6

STRUCTURAL LINER TRAYS 437

6.1 Introduction 437

6.2 Design procedures for cassette sections 442

6.2.1 General 442

6.2.2 Axial compression 443

6.2.3 Moment resistance 444

6.2.3.1 Bending with the narrow flange in compression (wide flange in tension) 444

6.2.3.2 Bending with the wide flange in compression 447

6.2.4 Behaviour in shear 449

6.3 Design procedures for cassette panels acting as diaphragm 453

6.3.1 Cassettes spanning horizontal to the length of diaphragm (liner tray shear panels) 453

6.3.2 Some peculiar problems for design of wall panels of cassettes spanning vertically to the length of diaphragm 455

6.4 Combined effects 457
The use of cold-formed steel members in building construction began in the 1850s in both the United States and Great Britain. In the 1920s and 1930s, acceptance of cold-formed steel as a construction material was still limited because there was no adequate design standard and there was limited information on material use in building codes. One of the first documented uses of cold-formed steel as a building material is the Virginia Baptist Hospital, constructed around 1925 in Lynchburg, Virginia, USA. The building structure was composed by masonry and the floors supported by cold-formed steel built-up joists of back-to-back lipped channel sections. Only some 20 years later, only, Lustron Corporation built in Albany, New York, with almost 2500 steel-framed homes, with the framing, finishes, cabinets and furniture made from cold-formed steel. These inexpensive houses were built for the veterans returning from the World War II. This was the beginning of cold-formed steel adventure in building.

In recent years, cold formed steel sections are used more and more as primary framing components. Wall stud systems in housing, trusses, building frames or pallet rack structures are some examples. As secondary structural systems they are used as purlins and side rails or floor joists, as well as in building envelopes. Cassette sections in modern housing systems play simultaneously the role of primary structure and envelope. Profiled decking is widely used as basic components in composite steel-concrete slabs.

Cold-formed steel members are efficient in terms of both their stiffness and strength. Additionally, because the base steel is thin, even less than 1mm thick when high strength steel is used, the members are lightweight. The use of thinner sections and high strength steel leads to design problems for structural engineers which may not normally be encountered in routine structural steel design. Further, the shapes which can be cold-formed are often considerably more complex than hot-rolled steel shapes such as I-
sections and plain channel sections. The cold-formed sections commonly have mono-symmetric or point symmetric shapes, and normally have stiffening lips on flanges and intermediate stiffeners in wide flanges and webs. Both simple and complex shapes can be formed for structural and non-structural applications.

Cold-formed steel design is dominated by two specific problems, i.e. (1) stability behaviour, which is dominant for design criteria of thin sections, and (2) connecting technology, which is specific and influences significantly the structural performance and design detailing.

Special design standards have been developed to cover the specific problems of cold-formed steel structures. In the USA, the Specification for the design of cold-formed steel structural members of the American Iron and Steel Institute was first produced in 1946 and has been regularly updated based on research to the most recent 2007 edition, AISI S100-07, entitled North American Specification for Design of Cold-Formed Steel Structural Members.

In Europe, the ECCS Committee TC7 originally produced the European Recommendations for the design of light gauge steel members in 1987 (ECCS, 1987). This European document has been further developed and published in 2006 as the European Standard Eurocode 3: Design of steel structures. Part 1-3: General Rules. Supplementary rules for cold-formed thin gauge members and sheeting (EN 1993-1-3, 2006).

In Australia and New Zealand, the last version of specification for the design of cold-formed steel structures, AS/NZS 4600, was published in December 2005, and the review of cold-formed steel design specification could be continued around the world.

The market share of cold-formed structural steelwork continues to increase in the developed world. The main reasons can be found in the improving technology of manufacture and corrosion protection which leads, in turn, to an increased competitiveness of resulting products as well as new applications. Recent studies have shown that the coating loss for galvanised
steel members is sufficiently slow, and indeed slows down to effectively zero, than a design life in excess of 60 years can be guaranteed.

The range of use of cold-formed steel sections specifically as load-bearing structural components is very wide. Besides building applications, cold-formed steel elements can be met in the Automotive industry, Shipbuilding, Rail transport, in Aircraft industry, Highway engineering, Agricultural and Industry equipment, Office equipment, Chemical, Mining, Petroleum, Nuclear and Space industries.

This book is primarily concerned with the design of cold-formed steel members and structures in building construction in Europe. For this reason it is mainly focused on the EN 1993-1-3, and the related parts of EN 1993 (e.g. EN 1993-1-1, EN 1993-1-5, EN 1993-1-8, etc.).

Generally, the book contains the theoretical background and design rules for cold-formed members and connections, accompanied by design oriented flow charts and worked examples for common building application.

The book was conceived primarily as a technical support for structural engineers in design and consulting offices, but it is expected to be of interest and useful for students and staff members of structural engineering faculties, as well as, for engineers working in steelwork industry.

Dan Dubina
Viorel Ungureanu
Raffaele Landolfo