DESIGN OF STEEL STRUCTURES
ECCS EUROCODE DESIGN MANUALS

ECCS EDITORIAL BOARD
Luis Simões da Silva (ECCS)
António Lamas (Portugal)
Jean-Pierre Jaspart (Belgium)
Reidar Bjorhovde (USA)
Ulrike Kuhlmann (Germany)

DESIGN OF STEEL STRUCTURES
Luis Simões da Silva, Rui Simões and Helena Gervásio

FIRE DESIGN OF STEEL STRUCTURES
Jean-Marc Franssen and Paulo Vila Real

INFORMATION AND ORDERING DETAILS
For price, availability, and ordering visit our website www.steelconstruct.com.
For more information about books and journals visit www.ernst-und-sohn.de.
DESIGN OF STEEL STRUCTURES

Eurocode 3: Design of steel structures
Part 1-1 – General rules and rules for buildings

Luís Simões da Silva
Rui Simões
Helena Gervásio
TABLE OF CONTENTS

FOREWORD
xiii
PREFACE
xv

Chapter 1
INTRODUCTION
1
1.1. General Observations
1
1.2. Codes of Practice and Normalization
3
 1.2.1. Introduction
 3
 1.2.2. Eurocode 3
 6
 1.2.3. Other standards
 7
1.3. Basis of Design
8
 1.3.1. Basic concepts
 8
 1.3.2. Reliability management
 9
 1.3.3. Basic variables
 13
 1.3.3.1. Introduction
 13
 1.3.3.2. Actions and environmental influences
 13
 1.3.3.3. Material properties
 14
 1.3.3.4. Geometrical data
 15
 1.3.4. Ultimate limit states
 15
 1.3.5. Serviceability limit states
 16
 1.3.6. Durability
 18
 1.3.7. Sustainability
 19
1.4. Materials
21
Table of Contents

1.4.1. Material specification 21
1.4.2. Mechanical properties 22
1.4.3. Toughness and through thickness properties 25
1.4.4. Fatigue properties 27
1.4.5. Corrosion resistance 27
1.5. Geometric Characteristics and Tolerances 28

Chapter 2
STRUCTURAL ANALYSIS 33
2.1. Introduction 33
2.2. Structural Modelling 34
2.2.1. Introduction 34
2.2.2. Choice of member axis 36
2.2.3. Influence of eccentricities and supports 38
2.2.4. Non-prismatic members and members with curved axis 39
2.2.5. Influence of joints 44
2.2.6. Combining beam elements together with two and three dimensional elements 51
2.2.7. Worked examples 52
2.3. Global Analysis of Steel Structures 75
2.3.1. Introduction 75
2.3.2. Structural stability of frames 77
2.3.2.1. Introduction 77
2.3.2.2. Elastic critical load 80
2.3.2.3. 2nd order analysis 86
2.3.3. Imperfections 87
2.3.4. Worked example 93
2.4. Classification of Cross Sections 108
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 3</td>
<td></td>
</tr>
<tr>
<td>DESIGN OF MEMBERS</td>
<td>115</td>
</tr>
<tr>
<td>3.1. Introduction</td>
<td>115</td>
</tr>
<tr>
<td>3.1.1. General</td>
<td>115</td>
</tr>
<tr>
<td>3.1.2. Resistance of cross sections</td>
<td>116</td>
</tr>
<tr>
<td>3.1.2.1. General criteria</td>
<td>116</td>
</tr>
<tr>
<td>3.1.2.2. Section properties</td>
<td>117</td>
</tr>
<tr>
<td>3.1.3. Buckling resistance of members</td>
<td>121</td>
</tr>
<tr>
<td>3.2. Tension</td>
<td>121</td>
</tr>
<tr>
<td>3.2.1. Behaviour in tension</td>
<td>121</td>
</tr>
<tr>
<td>3.2.2. Design for tensile force</td>
<td>123</td>
</tr>
<tr>
<td>3.2.3. Worked examples</td>
<td>126</td>
</tr>
<tr>
<td>3.3. Laterally Restrained Beams</td>
<td>134</td>
</tr>
<tr>
<td>3.3.1. Introduction</td>
<td>134</td>
</tr>
<tr>
<td>3.3.2. Design for bending</td>
<td>135</td>
</tr>
<tr>
<td>3.3.2.1. Elastic and plastic bending moment resistance</td>
<td>135</td>
</tr>
<tr>
<td>3.3.2.2. Uniaxial bending</td>
<td>137</td>
</tr>
<tr>
<td>3.3.2.3. Bi-axial bending</td>
<td>138</td>
</tr>
<tr>
<td>3.3.2.4. Net area in bending</td>
<td>139</td>
</tr>
<tr>
<td>3.3.3. Design for shear</td>
<td>139</td>
</tr>
<tr>
<td>3.3.4. Design for combined shear and bending</td>
<td>140</td>
</tr>
<tr>
<td>3.3.5. Worked examples</td>
<td>142</td>
</tr>
<tr>
<td>3.4. Torsion</td>
<td>154</td>
</tr>
<tr>
<td>3.4.1. Theoretical background</td>
<td>154</td>
</tr>
<tr>
<td>3.4.1.1. Introduction</td>
<td>154</td>
</tr>
<tr>
<td>3.4.1.2. Uniform torsion</td>
<td>156</td>
</tr>
<tr>
<td>3.4.1.3. Non-uniform torsion</td>
<td>157</td>
</tr>
</tbody>
</table>
Table of Contents

3.4.1.4. *Cross section resistance in torsion* 161

3.4.2. Design for torsion 164

3.4.3. Worked examples 166

3.5. Compression 172

3.5.1. Theoretical background 172

 3.5.1.1. *Introduction* 172

 3.5.1.2. *Elastic critical load* 172

 3.5.1.3. *Effect of imperfections and plasticity* 177

3.5.2. Design for compression 183

3.5.3. Worked examples 188

3.6. Laterally Unrestrained Beams 197

3.6.1. Introduction 197

3.6.2. Lateral-torsional buckling 197

 3.6.2.1. *Introduction* 197

 3.6.2.2. *Elastic critical moment* 198

 3.6.2.3. *Effect of imperfections and plasticity* 208

3.6.3. Lateral-torsional buckling resistance 210

3.6.4. Worked examples 214

3.7. Beam-Columns 223

3.7.1. Introduction 223

3.7.2. Cross section resistance 224

 3.7.2.1. *Theoretical background* 224

 3.7.2.2. *Design resistance* 227

3.7.3. Buckling resistance 230

 3.7.3.1. *Theoretical background* 230

 3.7.3.2. *Design resistance* 233

3.7.4. Worked examples 242
Chapter 4

ELASTIC DESIGN OF STEEL STRUCTURES

- **4.1. Introduction** 271
- **4.2. Simplified Methods of Analysis** 273
 - **4.2.1. Introduction** 273
 - **4.2.2. Amplified sway-moment method** 275
 - **4.2.3. Sway-mode buckling length method** 277
 - **4.2.4. Worked example** 278
- **4.3. Member Stability of Non-prismatic Members and Components** 288
 - **4.3.1. Introduction** 288
 - **4.3.2. Non-prismatic members** 288
 - **4.3.3. Members with intermediate restraints** 293
 - **4.3.4. General method** 299
 - **4.3.5. Worked example** 302
- **4.4. Design Example 1: Elastic Design of Braced Steel-Framed Building** 317
 - **4.4.1. Introduction** 317
 - **4.4.2. Description of the structure** 318
 - **4.4.3. General safety criteria, actions and combinations of actions** 321
 - **4.4.3.1. General safety criteria** 321
 - **4.4.3.2. Permanent actions** 321
 - **4.4.3.3. Imposed loads** 321
 - **4.4.3.4. Wind actions** 322
 - **4.4.3.5. Summary of basic actions** 329
 - **4.4.3.6. Frame imperfections** 329
 - **4.4.3.7. Load combinations** 332
 - **4.4.3.8. Load arrangement** 334
TABLE OF CONTENTS

4.4.4. Structural analysis 335
 4.4.4.1. Structural model 335
 4.4.4.2. Linear elastic analysis 336
 4.4.4.3. Susceptibility to 2nd order effects: elastic critical loads 336
 4.4.4.4. 2nd order elastic analysis 338

4.4.5. Design checks 339
 4.4.5.1. General considerations 339
 4.4.5.2. Cross section resistance 341
 4.4.5.3. Buckling resistance of beams 342
 4.4.5.4. Buckling resistance of columns and beam-columns 342

Chapter 5

PLASTIC DESIGN OF STEEL STRUCTURES 343

5.1. General Rules for Plastic Design 343
 5.1.1. Introduction 343
 5.1.2. Plastic limit analysis: method of mechanisms 344
 5.1.3. Code requirements for plastic analysis 349

5.2. Methods of Analysis 352
 5.2.1. Introduction 352
 5.2.2. Approximate methods for pre-design 352
 5.2.3. Computational analysis 364
 5.2.4. 2nd order effects 369
 5.2.4.1. Introduction 369
 5.2.4.2. Elastic critical load 369
 5.2.4.3. 2nd order computational analysis 372
 5.2.4.4. Simplified methods for analysis 373

5.2.5. Worked example 375
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3. Member Stability and Buckling Resistance</td>
<td>385</td>
</tr>
<tr>
<td>5.3.1. Introduction</td>
<td>385</td>
</tr>
<tr>
<td>5.3.2. General criteria for the verification of the stability of members with plastic hinges</td>
<td>385</td>
</tr>
<tr>
<td>5.3.3. Bracings</td>
<td>386</td>
</tr>
<tr>
<td>5.3.4. Verification of the stability of members with plastic hinges</td>
<td>389</td>
</tr>
<tr>
<td>5.3.4.1. Introduction</td>
<td>389</td>
</tr>
<tr>
<td>5.3.4.2. Prismatic members constituted by hot-rolled or equivalent welded I sections</td>
<td>390</td>
</tr>
<tr>
<td>5.3.4.3. Haunched or tapered members made of rolled or equivalent welded I sections</td>
<td>392</td>
</tr>
<tr>
<td>5.3.4.4. Modification factors for moment gradients in members laterally restrained along the tension flange</td>
<td>395</td>
</tr>
<tr>
<td>5.3.5. Worked examples</td>
<td>397</td>
</tr>
<tr>
<td>5.4. Design Example 2: Plastic Design of Industrial Building</td>
<td>407</td>
</tr>
<tr>
<td>5.4.1. Introduction</td>
<td>407</td>
</tr>
<tr>
<td>5.4.2. General description</td>
<td>408</td>
</tr>
<tr>
<td>5.4.3. Quantification of actions, load combinations and general safety criteria</td>
<td>408</td>
</tr>
<tr>
<td>5.4.3.1. General criteria</td>
<td>408</td>
</tr>
<tr>
<td>5.4.3.2. Permanent actions</td>
<td>409</td>
</tr>
<tr>
<td>5.4.3.3. Imposed loads</td>
<td>409</td>
</tr>
<tr>
<td>5.4.3.4. Snow loads</td>
<td>409</td>
</tr>
<tr>
<td>5.4.3.5. Wind loads</td>
<td>410</td>
</tr>
<tr>
<td>5.4.3.6. Summary of basic actions</td>
<td>415</td>
</tr>
<tr>
<td>5.4.3.7. Imperfections</td>
<td>415</td>
</tr>
<tr>
<td>5.4.3.8. Load combinations</td>
<td>416</td>
</tr>
<tr>
<td>5.4.4. Pre-design</td>
<td>418</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.4.5. Structural analysis</td>
<td>421</td>
</tr>
<tr>
<td>5.4.5.1. Linear elastic analysis</td>
<td>421</td>
</tr>
<tr>
<td>5.4.5.2. 2nd order effects</td>
<td>423</td>
</tr>
<tr>
<td>5.4.5.3. Elastic-plastic analysis</td>
<td>424</td>
</tr>
<tr>
<td>5.4.6. Code checks</td>
<td>426</td>
</tr>
<tr>
<td>5.4.6.1. General considerations</td>
<td>426</td>
</tr>
<tr>
<td>5.4.6.2. Cross section resistance</td>
<td>426</td>
</tr>
<tr>
<td>5.4.6.3. Buckling resistance of the rafters</td>
<td>426</td>
</tr>
<tr>
<td>5.4.6.4. Buckling resistance of the columns</td>
<td>429</td>
</tr>
<tr>
<td>5.4.7. Synthesis</td>
<td>429</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>431</td>
</tr>
</tbody>
</table>
The development program for the design manuals of the European Convention for Constructional Steelwork (ECCS) represents a major effort for the steel construction industry and the engineering profession in Europe. Conceived by the ECCS Technical Activities Board under the leadership of its chairman, Professor Luis Simões da Silva, the manuals are being prepared in close agreement with the final stages of Eurocode 3 and its national Annexes. The scope of the development effort is vast, and reflects a unique undertaking in the world.

The publication of the first of the manuals, Design of Steel Structures, is a signal achievement which heralds the successful completion of the Eurocode 3 work and brings it directly to the designers who will implement the actual use of the code. As such, the book is more than a manual – it is a major textbook that details the fundamental concepts of the code and their practical application. It is a unique publication for a major construction market.

Following a discussion of the Eurocode 3 basis of design, including the principles of reliability management and the limit state approach, the steel material standards and their use under Eurocode 3 are detailed. Structural analysis and modeling are presented in a chapter that will assist the design engineer in the first stages of a design project. This is followed by a major chapter that provides the design criteria and approaches for the various types of structural members. The theories of behavior and strength are closely tied to the Eurocode requirements, making for a unique presentation of theory into practice. The following chapters expand on the principles and applications of elastic and plastic design of steel structures.

The many design examples that are presented throughout the book represent a significant part of the manual. These will be especially well received by the design profession. Without a doubt, the examples will facilitate the acceptance of the code and provide for a smooth transition from earlier national codes to the Eurocode.

Reidar Bjørhovde
Member, ECCS Editorial Board
PREFACE

The General rules and rules for buildings of part 1-1 of Eurocode 3 constitute the core of the code procedures for the design of steel structures. They contain the basic guidance for structural modeling and analysis of steel frameworks and the rules for the evaluation of the resistance of structural members and components subject to different loading conditions.

According to the objectives of the ECCS Eurocode Design Manuals, it is the objective of this book to provide mix of “light” theoretical background, explanation of the code prescriptions and detailed design examples. Consequently, this book is more than a manual: it provides an all-in-one source for an explanation of the theoretical concepts behind the code and detailed design examples that try to reproduce real design situations instead of the usually simplified examples that are found in most textbooks.

This book evolved from the experience of teaching Steel Structures according to ENV 1993-1-1 since 1993. It further benefited from the participation in Technical Committees TC8 and TC10 of ECCS where the background and the applicability of the various clauses of EN 1993-1-1 was continuously questioned. This book covers exclusively part 1-1 of Eurocode 3 because of the required level of detail. Forthcoming volumes discuss and apply most of the additional parts of Eurocode 3 using a consistent format.

Chapter 1 introduces general aspects such as the basis of design, material properties and geometric characteristics and tolerances, corresponding to chapters 1 to 4 and chapter 7 of EN 1993-1-1. It highlights the important topics that are required in the design of steel structures. Structural analysis is discussed in chapter 2, including structural modelling, global analysis and classification of cross sections, covering chapter 5 of EN 1993-1-1. The design of steel members subjected to various types of internal force (tension, bending and shear, compression and torsion) and their combinations is described in chapter 3, corresponding to chapter 6 of EN 1993-1-1. Chapter 4 presents the design of steel structures using 3D elastic analysis based on
the case study of a real building. Finally, chapter 5 discusses plastic design, using a pitched-roof industrial building to exemplify all relevant aspects.

Furthermore, the design examples provided in this book are chosen from real design cases. Two complete design examples are presented: i) a braced steel-framed building; and ii) a pitched-roof industrial building. The chosen design approach tries to reproduce, as much as possible, real design practice instead of more academic approaches that often only deal with parts of the design process. This means that the design examples start by quantifying the actions. They then progress in a detailed step-by-step manner to global analysis and individual member verifications. The design tools currently available and adopted in most design offices are based on software for 3D analysis. Consequently, the design example for multi-storey buildings is analysed as a 3D structure, all subsequent checks being consistent with this approach. This is by no means a straightforward implementation, since most global stability verifications were developed and validated for 2D structures.

The authors are indebted to Prof. Reidar Bjorhovde who carried out a detailed technical review of the manuscript and provided many valuable comments and suggestions. Warm thanks to Prof. David Anderson who carried out an additional detailed revision of the book and also made sure that the English language was properly used. Further thanks to Liliana Marques and José Alexandre Henriques, PhD students at the University of Coimbra, for the help with the design examples of chapter 4. Additional thanks to Prof. Tiago Abecasis who spotted innumerous “bugs” in the text. Finally, thanks to Filipe Dias and the staff of cmm and ECCS for all the editorial and typesetting work, making it possible to bring to an end two years of work in this project.

Luis Simões da Silva
Rui Simões
Helena Gervásio